Legendre spectral element method with nearly incompressible materials

Y.T. Peet, P.F. Fischer

*School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

A R T I C L E I N F O

Article history:
Received 21 January 2013
Accepted 8 October 2013
Available online 17 October 2013

Keywords:
Spectral element method
Nearly incompressible materials
Poisson locking

A B S T R A C T

We investigate convergence behavior of a spectral element method based on Legendre polynomial shape functions solving linear elasticity equations for a range of Poisson’s ratios of a material. We document uniform convergence rates independent of Poisson’s ratio for a wide class of problems with both straight and curved elements in two and three dimensions, demonstrating locking-free properties of the spectral element method with nearly incompressible materials. We investigate computational efficiency of the current method without a preconditioner and with a simple mass-matrix preconditioner, however no attempt to optimize a choice of a preconditioner was made.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Spectral element methods (SEM), which essentially represent a hybrid between finite-element methods (FEM) and spectral methods, have received increased attention during the past two decades because they retain an exponential accuracy of global spectral methods while allowing for a geometrical flexibility of h-type FEM. Originally introduced in the field of computational fluid dynamics (Patera, 1984; Fischer and Patera, 1991; Deville et al., 2002), spectral element methods have been adopted for elastostatics (Pavarino and Widlund, 2000a, 2000b) and elastodynamics (Casadei et al., 2002; Stupazzini and Zambelli, 2005; Dong and Yosibash, 2009) problems, modeling of elastic wave propagation in seismology (Komatitsch et al., 1999; Chaljub et al., 2003; Komatitsch et al., 2005), medical diagnostics (Brigham et al., 2011), and damage detection (Ha and Chang, 2010) by high-frequency ultrasound excitation. In addition to forward problems, SEM methods have also been applied to a solution of adjoint problems (Tromp et al., 2008) as those encountered in tomography, inverse acoustics, data assimilation and optimization.

Spectral element methods are similar to hp finite-element methods (Szabó and Babuška, 1991) in which grid refinement can be achieved both by increasing the number of elements (h-refinement) and by increasing the polynomial order of approximation within each element (p-refinement). The advantage of higher-order p and hp finite-element methods is that they are able to eliminate the phenomenon of locking present with low-order FEM (Vogelius, 1983; Babuska and Suri, 1992a, 1992b; Suri, 1996).

Locking is defined as significant deterioration or complete loss of convergence when a certain parameter approaches its limiting value (Babuska and Suri, 1992a, 1992b; Suri, 1996; Hughes, 1987). One important type of locking is volumetric, or Poisson, locking, which occurs when Poisson’s ratio \(\nu \) of an isotropic elastic material approaches 0.5. As this situation occurs, the divergence of a displacement field approaches zero, representing the condition of material incompressibility. Nearly incompressible behavior is peculiar to viscoelastic materials such as rubberlike polymers and elastomers (polyamide, polystyrene, polycarbonate, polyurethane, butadiene, natural rubber, etc.) (Mott et al., 2008). In addition, soft biological tissues such as endothelium, smooth muscle cells, and adventitia forming the blood vessel walls exhibit similar rubberlike behavior (Humphrey, 2003) and are often modeled as elastic incompressible materials (Shim and Kamm, 2002; Figueroa et al., 2006; Valencia and Solis, 2006).

When nearly incompressible materials are modeled with low-order h-type finite elements, Poisson locking results in a poor numerical solution that does not improve, or improves very slowly, with grid refinement (Suri, 1996; Gopalakrishnan, 2002). Locking occurs because of the need to satisfy the divergence-free constraint on displacements, one per element, which, in the case of h-refinement with low p, results in a number of constraints comparable to the number of degrees of freedom (Szabó et al., 1989; Yu
et al., 1993). To remedy the situation, one must reduce the number of
constraints per degree of freedom (Nagtegaal et al., 1974). One
way to do it is to enforce the constraints in a variational, rather than
exact form, as is done with the reduced/selective integration
(Malkus and Hughes, 1978), field-consistent approach (Prathap,
1993) and mixed methods, where the divergence constraint is
introduced through a Lagrange multiplier (Brezzi and Fortin, 1991).
Additionally, in case when the Poisson’s ratio is equal to 0.5, a scalar
potential (displacement potential) formulation can be used, as in
the context of acoustic wave propagation in a fluid media (Cristini and
Komatitsch, 2012).

Higher-order p and hp methods present an alternative solution for
eliminating locking by satisfying the appropriate constraints
effectively; they are able to do so because of the elevated number of
degrees of freedom per element and inherently low constraint ra-
tio. It has been shown theoretically (Vogelius, 1983; Babuska and
Suri, 1992a; Suri, 1996) and demonstrated numerically (Suri,
1996; Szabó et al., 1989; Heisserer et al., 2008) that in p and hp
versions of FEM the error measured in the energy norm converges
at the same rate independent of Poisson’s ratio. Spectral element
methods are closely related to hp finite element methods. They
both employ high-order polynomial shape functions to discretize
the solution. The important difference is the form of the shape
functions: they are constructed from Legendre polynomials and are
of hierarchical type for hp finite elements (Szabó and Babuska,
1991; Babuska and Suri, 1994), while they correspond to Lagrange
interpolating polynomials defined on Gauss–Lobatto–Legendre
points and constitute a nodal basis for spectral element methods
(Deville et al., 2002; Pavarino and Widlund, 2000a). This results in
different quadrature rules and different structure of a mass matrix:
it is full for hp finite-element methods, while it is diagonal for
spectral elements. This allows SEM methods to benefit from more
efficient inversion and tensor-product factorizations, while hierar-
chical hp-FEM methods are better suited for adaptive refinement
(Sprague and Geers, 2007). Due to a closely-related high-order
foundation of both methods, spectral element and hp finite element
methods are expected to possess similar locking-free properties
associated with the higher-order approximation; however, due to
important differences in formulation and numerics, a separate
study verifying this fact in a spectral element formulation is
needed. In spite of a popularity of spectral element methods, their
behavior with nearly incompressible materials in its original
(displacement) formulation have not been documented.

Pavarino et al. (Pavarino and Widlund, 2000a, 2000b; Pavarino,
1997; Pavarino et al., 2010) theoretically investigated behavior of
several preconditioning schemes for Legendre spectral element
discretization of displacement formulation for compressible ma-
terials (Pavarino and Widlund, 2000a) and mixed formulation for
incompressible materials (Pavarino and Widlund, 2000b; Pavarino,
1997; Pavarino et al., 2010). Sprague et al. (Sprague and Geers,
2007; Brito and Sprague, 2012) documented computational
studies of convergence of Legendre spectral element formulation for
a 1D Timoshenko beam (Sprague and Geers, 2007) and 2D
Reissner-Mindlin plate (Brito and Sprague, 2012) using Poisson’s
ratioν = 0.3. Dong and Yosibash (2009) computationally investi-
gated convergence of Jacobi spectral element formulation with 3D
elasticity equations, also usingν = 0.3. Few other studies with
spectral elements, mostly with application to seismology, consid-
ered Earth-like solids with Poisson’s ratios of 0.25–0.33
(Stupazzini and Zambelli, 2005; Komatitsch et al., 1999; Chaljub
et al., 2003; Komatitsch et al., 2005). The main goal of this paper
is to investigate convergence properties of Legendre spectral
element formulation for steady linear elasticity problems for a
range of Poissón’s ratios, from compressible (ν = 0.3) to nearly
incompressible (up to ν = 0.4999999999). We also look at the
computational efficiency of the method and compare the iteration
counts of a conjugate gradient solver with and without a pre-
conditioner with the mixed spectral-element formulation of
Pavarino (1997). No attempt at finding a good preconditioner has
been made in the current study. This point will be addressed in the
future works.

The paper is organized as follows. In Section 2, we present the
governing equations and the spectral element discretization. In
Section 3, we verify that the discretization scheme passes the inf-
sup test. In Section 4, we follow Refs. (Babuska and Suri, 1992a,
1992b; Suri, 1996) to arrive at a computable measure of locking.
In Section 5, we use this measure to report the locking properties of
the spectral element method in two and three dimensions with
straight and curved elements, as well as on highly distorted
meshes. In Section 6, we look at the computational efficiency of the
current method and compare the iteration counts with mixed
spectral-element methods (Pavarino, 1997). In Section 7, we draw
conclusions.

2. Problem formulation

In this section, we present the problem formulation, including
governing equations and their numerical discretization.

2.1. Equations and the variational form

We consider linear elasticity equations
\[\nabla \cdot \sigma + f = 0. \]
(1)

where \(\sigma \) is the Cauchy stress tensor, and \(f \) is the body force per unit
volume. The method proceeds by casting Eq. (1) into an equivalent
variational form. Let \(\Omega \subseteq \mathbb{R}^d \), \(d = 2, 3 \), be a domain of interest and
\(\partial \Omega = \partial \Omega_D \cup \partial \Omega_N \) be its boundary decomposed into the parts
with Dirichlet and Neumann (traction) boundary conditions. Define the
following proper subspaces of the \(H^1(\Omega)^d \) Sobolev space (space of
vector-valued functions square-integrable over \(\Omega \) whose der-
ivatives are also square-integrable over \(\Omega \)):

\[X = \left\{ v(x) \in H^1(\Omega)^d : \nabla v(x) |_{\partial \Omega_D} = u_D(x) \right\} , \]
\[X_0 = \left\{ v(x) \in H^1(\Omega)^d : \nabla v(x) |_{\partial \Omega_N} = 0 \right\} . \]
(2)

The variational formulation of the linear elasticity problem is as
follows: Find the displacement field \(u(x) \in X \) such that \(\forall v(x) \in X_0 \)

\[\int_{\Omega} \sigma(u) : \varepsilon(v) d\Omega + \int_{\partial \Omega_D} \textbf{t} \cdot \textbf{v} d\Gamma + \int_{\partial \Omega_N} \textbf{f} \cdot \textbf{v} d\Omega = 0 . \]
(3)

Here \(\textbf{t} \) is the external traction force applied on \(\partial \Omega_D \), and \(\varepsilon(v) = \frac{1}{2} (\nabla v + (\nabla v)^T) \) is the linearized strain tensor. The vector and tensor
inner products are defined as

\[\textbf{u} \cdot \textbf{v} = \sum_{i=1}^{d} u_i v_i , \]
(4)

\[\sigma(u) : \varepsilon(v) = \sum_{i=1}^{d} \sum_{j=1}^{d} \sigma_{ij}(u) \varepsilon_{ij}(v) . \]
(5)

For linear elasticity, constitutive equations arise from Hook’s
law,

\[\sigma = 2\mu e + \lambda tr(e) \mathbf{1} . \]
(6)
where
\begin{equation}
\mu = \frac{E}{2(1 + \nu)},
\end{equation}
\begin{equation}
\lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)},
\end{equation}
for 3D isotropic materials and 2D plane strain formulation, and
\begin{equation}
\lambda = \frac{E\nu}{(1 + \nu)(1 - \nu)}
\end{equation}
for 2D plane stress formulation, \(E \) is Young’s modulus, \(\nu \) is Poisson’s ratio, \(\tau(\cdot) \) denotes the trace, and \(I \) is the identity matrix. Introducing constitutive relations (6) into Eq. (5) leads to
\begin{equation}
\sigma(\mathbf{u}) : e(\mathbf{v}) = 2\mu(e(\mathbf{u}) : e(\mathbf{v})) + \lambda \text{div} \mathbf{u} \text{div} \mathbf{v}.
\end{equation}
We denote
\begin{equation}
B_i(\mathbf{u}, \mathbf{v}) = \int_{\Omega} (2\mu(e(\mathbf{u}) : e(\mathbf{v})) + \lambda \text{div} \mathbf{u} \text{div} \mathbf{v}) \text{d}\Omega
\end{equation}
as the bilinear form of linear elasticity.

2.2. Spectral element discretization

In the spectral element method, the computational domain \(\Omega \) is decomposed into a set of nonoverlapping subdomains (elements) \(\Omega = \bigcup_{e=1}^{n} \Omega^e \). In the current method, we assume that for each \(\Omega^e \) there exists an affine transformation \(\Omega = \phi^e(\Omega^t) \) into the reference element \(\Omega = [-1,1]^d \), implying that \(\Omega^e \) are hexahedral. Other choices (prismatic, tetrahedral, etc.) are available (Dong and Yosibash, 2009; Karniadakis and Sherwin 2nd ed., 2005), but they will not be pursued here. On the reference element \(\Omega \) we introduce \(Q_0(\Omega) \), the space of polynomial functions of degree \(p \) in each spatial variable, and restrict the trial and test functions \(\mathbf{u} \) and \(\mathbf{v} \) in each element \(\Omega^e \) to the finite-dimensional spaces \(\mathbf{X}^e \) and \(\mathbf{X}_0^e \):
\begin{equation}
\mathbf{X}^e = \{ \mathbf{v}(\mathbf{x}) \in \mathbf{X}: v_j (\mathbf{x}) = \psi \phi^e \psi^e, \psi \in Q_0(\Omega), i = 1, \ldots, d \},
\end{equation}
\begin{equation}
\mathbf{X}_0^e = \{ \mathbf{v}(\mathbf{x}) \in \mathbf{X}_0: v_j (\mathbf{x}) = \psi \phi^e \psi^e, \psi \in Q_{0}(\Omega), i = 1, \ldots, d \},
\end{equation}
where \(f + g \) denotes a function composition. The basis functions for the polynomial space \(\mathbf{Q}_p(\Omega) \) are chosen to be the tensor product of one-dimensional Lagrange interpolating polynomials \(h_i(r), r \in [-1,1] \), on the Gauss–Lobatto–Legendre (GLL) quadrature points \(\xi_m \in [-1,1], i, m = 0, \ldots, p \), satisfying \(h_i(\xi_m) = \delta_{im} \). Every function in \(\mathbf{Q}_p(\Omega) \) is represented as a tensor product
\begin{equation}
f(\mathbf{x})|_{\Omega} = \sum_{i=0}^{p} \sum_{j=0}^{p} \sum_{k=0}^{p} f_{ij,k}^e h_i(r) h_j(r) h_k(r),
\end{equation}
where \(f_{ij,k}^e \) are unknown expansion coefficients, and curly brackets contain the extra terms that arise in three dimensions. Derivatives of a function in \(\mathbf{Q}_p(\Omega) \) can be defined analogously through the derivatives of the corresponding Lagrange polynomials:
\begin{equation}
\frac{\partial f(\mathbf{x})}{\partial x_l}|_{\Omega} = \sum_{i=0}^{p} \sum_{j=0}^{p} \sum_{k=0}^{p} f_{ij,k}^e h_i(r) h_j(r) h_k(r).\end{equation}
The current choice of basis functions allows for an efficient quadrature implementation. In addition, it is continuous across subdomain interfaces (Fischer, 1997). The quadrature rules are defined as
\begin{equation}
\int_{\Omega} f \text{d}\Omega = \sum_{i=0}^{p} \sum_{j=0}^{p} \sum_{k=0}^{p} f_{ij,k}^e \sigma_i \sigma_j \sigma_k |_{\Omega^e}.
\end{equation}
and
\begin{equation}
\int_{\Omega} \mathbf{u} : \mathbf{v} \text{d}\Omega = \mathbf{u}^T \mathbf{B}_u \mathbf{v},
\end{equation}
where \(\mathbf{u}, \mathbf{v} \) are the vectors with dimensions \(N = dN, N = (p + 1)^d \), of the corresponding expansion coefficients \(u_{ij}^e |_{\Omega^e} \), \(u_{ij}^m |_{\Omega^m} \), \(i, j, k = 0, 1, \ldots, p, m = 1, \ldots, d, e = 1, \ldots, e \), and \(\mathbf{B}_u \) is the (diagonal) mass matrix. Quadrature for the surface integral \(\int_{\partial \Omega^e} \mathbf{t} \cdot \mathbf{v} \text{d}l^e \) is defined similar to Eq. (16) using summation over the surface nodes on \(\partial \Omega^e \) with the corresponding surface quadrature weights and surface Jacobians in place of the volumetric ones. Using the definition of Eq. (14) for derivatives, one can analogously define discrete quadrature for a bilinear form of linear elasticity \(\mathbf{B}_u(\mathbf{u}, \mathbf{v}) \) of Eq. (11), resulting in a symmetric, positive-definite stiffness matrix \(\mathbf{A} \). Although the stiffness matrix is no longer diagonal, the corresponding matrix-vector products can be efficiently evaluated in \(O(p^d) \) operations if one retains the matrix tensor-product form in favor of its explicit formation (Orszag, 1980). Applying the corresponding numerical quadrature rules to every integral in the Eq. (3), one can reformulate the original variational problem in discrete form: Find \(\mathbf{U}_0 \in \mathbf{U}_0^N \) such that \(\mathbf{v} \mathbf{U}_0 = \mathbf{U}_0^N \).
\begin{equation}
\mathbf{v}^T \mathbf{A} \mathbf{U}_0 = \mathbf{v}^T \mathbf{U}_0^N \left(\mathbf{B}_f + \mathbf{B}_u (\mathbf{A} \mathbf{U}_0) \right),
\end{equation}
where an additional mask matrix \(\mathbf{A} \mathbf{U}_0 \) is introduced to account for Dirichlet boundary conditions, \(\mathbf{v}(\mathbf{x})|_{\partial \Omega} = \mathbf{u}_D(\mathbf{x}) \); \(\mathbf{A} \) is the diagonal matrix having zeros at the nodes corresponding to \(\partial \Omega_0 \) and ones everywhere else; \(\mathbf{U}_0^N \) is the subspace of the vector space \(\mathbf{R}^N \) enforcing homogeneous Dirichlet boundary conditions. The term \(\mathbf{B}_u(\mathbf{A} \mathbf{U}_0) \) in the right-hand side accounts for the surface integral \(\int_{\partial \Omega^e} \mathbf{t} \cdot \mathbf{v} \text{d}l^e \) arising from the traction boundary conditions, where \(\mathbf{B}_u \) is obtained from the mass matrix \(\mathbf{B} \) by zeroing out all the entries except the entries corresponding to the nodes of \(\partial \Omega_0 \). This discrete variational problem is equivalent to solving the linear system of equations for the vector \(\mathbf{U}_0 \in \mathbf{U}_0^N \)
\begin{equation}
\mathbf{K} \mathbf{U}_0 = \mathbf{F},
\end{equation}
where \(\mathbf{K} = \mathbf{A} \mathbf{U}_0 \) is the global stiffness matrix and the right-hand side \(\mathbf{F} = \mathbf{A} (\mathbf{B}_f + \mathbf{B}_u (\mathbf{A} \mathbf{U}_0)) \). Since the matrix \(\mathbf{K} \) is symmetric positive-definite (SPD), classical Conjugate Gradient approach, which is one of the most efficient iterative techniques for solving SPD linear systems (Saad, 2003), is applied to solve the matrix Equation (19). Note that, for example, with the mixed formulation of linear elasticity, a corresponding saddle-point problem results in a symmetric indefinite or even non-symmetric (depending on a preconditioner) system which prohibits the use of the classical
Conjugate Gradient method and calls for more sophisticated approaches, such as CR (Conjugate Residual), Bi-CGStab (Biconjugate Gradient Stabilized) or GMRES (Generalized Minimum Residual) (Pavarino, 1997).

The composite solution satisfying inhomogeneous Dirichlet boundary conditions is obtained as

\[\mathbf{u} = \mathbf{U} + \mathbf{u}_0. \]

(20)

3. Inf-sup test

We first show that the displacement-based spectral-element discretization scheme satisfies the inf-sup condition of Brezzi and Babuška (Brezzi and Fortin, 1991)

\[\inf_{q \in L^2(\Omega)} \sup_{v \in V_0} \frac{\langle q, \nabla v \rangle \mathrm{d}\Omega}{\|q\|_{L^2} \|v\|_{H^1}^*} \geq \delta > 0. \]

(21)

Inf-sup condition (21) is the condition of optimal convergence and, when satisfied, guarantees the absence of locking (Chapelle and Bathe, 1993). For mixed formulation, analytical proof of the inf-sup condition is available for Stokes problem for spectral-element formulation (Maday et al., 1992) and for elasticity problem for more general discrete mixed spaces (Suri and Stenberg, 1996). For displacement formulation, to the authors’ knowledge, analytical results are not available.

In spite of the absence of an analytical proof, a convenient numerical test of the inf-sup condition can be applied (Chapelle and Bathe, 1993; Bathe, 1996; Jensen and Vogelius, 1990). We follow the approach of Chapelle and Bathe (1993) who write a discrete form of the inf-sup condition (21) for a displacement method as

\[\inf_{\mathbf{w} \in \mathbf{W}} \sup_{u \in \mathcal{U}} \frac{\mathbf{w}^T \mathbf{G} \mathbf{U}^*}{\sqrt{\mathbf{w}^T \mathbf{G} \mathbf{W}^* \mathbf{U}^T \mathbf{S} \mathbf{U}}} \geq \delta > 0, \]

(22)

where the vectors \(\mathbf{w} \in \mathbf{W}(\Omega) \) are discrete representations of the functions \(\mathbf{w}(\mathbf{x}) \in \mathbf{X}_0 \), whose divergence equals \(q(\mathbf{x}) \in L_2(\Omega) \); see (Bathe, 1996) for the details of constructing the matrices \(\mathbf{G} \) and \(\mathbf{S} \). Numerical test follows by evaluating the inf-sup constant

\[\delta_N = \inf_{\mathbf{w} \in \mathbf{W}} \sup_{u \in \mathcal{U}} \frac{\mathbf{w}^T \mathbf{G} \mathbf{U}^*}{\sqrt{\mathbf{w}^T \mathbf{G} \mathbf{W}^* \mathbf{U}^T \mathbf{S} \mathbf{U}}} \]

(23)

on a sequence of successively-refined meshes (Chapelle and Bathe, 1993). This numerical evaluation is possible due to the result proven in (Brezzi and Fortin, 1991) stating that the inf-sup constant \(\delta_N \) in Eq. (23) equals to the square-root of the first non-zero eigenvalue \(\lambda_1 \) of the generalized eigenvalue problem \(\mathbf{G} \mathbf{U} = \delta \mathbf{S} \mathbf{U} \). We have tested two element shapes: a straight element and a curved element where we have varied the curvature by changing the amplitude of the curved side \(a \), see Fig. 1. The results of the numerical inf-sup test for different values of amplitude \(a \) are shown in Fig. 2. Following Chapelle and Bathe (Chapelle and Bathe, 1993), we plot results in the form \(\log(\delta_N) = f(\log(1/p)) \), where \(\delta_N \) is the calculated value of the inf-sup expression, and \(p \) is the polynomial order. In order to pass the inf-sup test, the inf-sup constant must stay bounded away from zero as the mesh is refined. It is seen that the straight element and curved elements with relatively large amplitudes of up to \(a < 15 \) pass the inf-sup test. When the amplitude reaches the values of \(a \geq 15 \) representing high to extreme levels of distortion, the element starts failing at large polynomial orders.

4. Measure of locking

In this section, we follow Refs. (Babuška and Suri, 1992a, 1992b; Suri, 1996) to define a computable measure of locking.

Let us first introduce several relevant concepts.

- **Solution space** \(H_0 \) is the set of exact solutions of Eq. (3).
- **Error functional** \(E_h(\mathbf{u}) \) is the considered error measure.
- **Extension procedure** \(\mathcal{F} \) is the rule defining how the space dimension \(N \) is to be increased.
- **Parameter set** \(S \) is the range of the values of the parameter. In our case, the parameter is the Poisson’s ratio \(\nu \) and the parameter set is \(S = [0,0.5] \).

For the extension procedure \(\mathcal{F} \), one can define the asymptotic rate of best approximation \(F_0(N) \) of functions in \(X_0 \) by functions in \(X_0^N \) as

\[F_0(N) = \sup_{\mathbf{w} \in \mathbf{W}} \inf_{\mathbf{v} \in \mathbf{V}} \| \mathbf{w} - \mathbf{v} \|_{H^1}. \]

One would expect \(F_0(N) \rightarrow 0 \) as \(N \rightarrow \infty \) for the viable methods. According to (Babuška and Suri, 1992a), a procedure \(\mathcal{F} \) is called free from locking, with respect to the solution sets \(H_0 \), and error measures \(E_h \), if the following property holds uniformly for all \(0 \leq \nu \leq \nu_0 \), with \(0 < \nu_0 < 0.5 \),
\[C_1(v_0)F_0(N) \leq \sup_{u \in H} E_f(u) \leq C_2(v_0)F_0(N), \]

where \(C_1(v_0), C_2(v_0) \) are independent of \(v \) and \(N \).

Related to the concept of locking is the concept of robustness. The extension procedure \(\mathcal{F} \) is called robust with respect to the solution sets \(H_\alpha \), and error measures \(E_\alpha \), \(\alpha \in S \), if and only if

\[\lim_{N \to \infty} \sup_{u \in H_\alpha} E_\alpha(u) = 0. \]

It is called robust with uniform order \(g(N) \) if and only if

\[\lim_{N \to \infty} \sup_{u \in H_\alpha} E_\alpha(u) \leq g(N), \]

where \(g(N) \to 0 \) as \(N \to \infty \).

The following theorem leads to a characterization of locking in terms of the loss in the asymptotic rate of convergence (Babuška and Suri, 1991b; Suri, 1996).

Theorem 1. \(\mathcal{F} \) is free from locking if and only if it is robust with uniform order \(g(N) \). Moreover, let \(f(N) \) be such that

\[f(N)F_0(N) = g(N) \to \infty \quad \text{as} \quad N \to \infty. \]

Then, \(\mathcal{F} \) shows locking of order \(f(N) \) if and only if it is robust with uniform order \(g(N) \).

Based on the above theorem, we are going to judge about the locking properties of the spectral element extension procedure \(\mathcal{F} \) defined above by looking at the order of robustness \(g(N) \). For this, the corresponding value of the error measure \(E_\alpha(u) \) for different test cases is calculated, and its limit, \(\lim_{N \to \infty} \sup_{u \in H_\alpha} E_\alpha(u) \), is compared to the asymptotic rate of best approximation \(F_0(N) \), which, for the spectral-element discretization is (Deville et al., 2002; Szabó and Babuška, 1991)

\[F_0(N) = O\left(h^{N + s}\right) \]

with the constant \(h < 1 \).

In the current study, we define the error functional \(E_f(u) \) to be the error in the energy norm (Babuška and Suri, 1992a; Suri, 1996; Szabó et al., 1989; Heisserer et al., 2008; Chilton and Suri, 1997; Yosibash, 1996)

\[E_f(u) = (B_f(u, u))^{1/2}, \]

where \(B_f(u, u) \) is the bilinear form of linear elasticity defined by Eq. (11).

5. **Numerical results**

In this section, we use the definition of locking given in the previous section to demonstrate locking and convergence properties of the displacement-based spectral element method on several test cases.

5.1. **Straight elements: bending of a beam (plane stress)**

In the first test problem, we consider a bending of a narrow cantilever beam of rectangular cross-section under the end load. For this configuration, plane stress conditions can be assumed, reducing the problem to a two-dimensional case with Lamé-coefficients given by Eqs. (7) and (9). An exact solution to this problem exists (Wang, 1953) and is given in Appendix A.1. We use length \(L = 10 \), width \(d = 1 \), Young’s modulus \(E = 10,000 \), and end load \(P = -3IE/L^3 \) (I is the cross-sectional moment of inertia) giving the end beam deflection \(v = -1 \). The boundary conditions are stress-free at the upper and lower edges, with parabolic shear stress distribution \(\tau_{xy} = -P(d^2 - 4y^2)/(2L) \) at the left edge (\(x = 0 \)) and displacements (or Dirichlet) boundary conditions at the right edge (\(x = L \)). The computational domain consists of \(e = 5 \) rectangular elements. The bent beam and the deflection of the beam centerline compared with the exact solution are shown in Fig. 3 for \(v = 0.3 \), \(p = 4 \). The agreement is excellent. To quantify the error with refinement, we plot the \(L_2(u) \) error versus the polynomial order in Fig. 4 for the values of \(p = 0.3 \) and \(v = 0.5 \).

Since the analytical solution is the polynomial of degree 3, the SEM recovers it with machine accuracy for \(p = 3 \) and higher. Note that for plane stress elasticity, the incompressibility condition \(v = 0.5 \) does not make the governing equations singular because it is \(1 - v \), and not \(1 - 2\nu \) that appears in the denominator of \(\lambda \) (cf. Eqs. (8) and (9)). That explains why the solution is recovered exactly for \(v = 0.5 \) as well as for \(v = 0.3 \) (Fig. 4). Thus, plane stress loading does not represent a challenging test for Poisson locking and will not be considered further.

5.2. **Straight elements: unit square (plane strain)**

To consider a more challenging test for Poisson locking, we look at a two-dimensional plane strain problem, with \(\mu \) and \(\lambda \) defined by Eqs. (7) and (8). We consider a deformation of a unit square \([0,1] \times [0,1]\), with an exact solution for displacements listed in Appendix A.2. We choose the values \(A = (1 - v)/\mu, B = -\nu/\mu \). This choice corresponds to the most general but realistic loading with nonzero divergence

\[\text{div} \mathbf{u} = (1 - 2v)\cos(\alpha)\cos(b\alpha), \]

which reduces to zero in the incompressible case \(v = 0.5 \); and with nonzero shear

\[\gamma_{xy} = -((1 - v)b/a - \nu(a/b)\sin(\alpha)\sin(b\alpha)). \]

We set \(a = \pi/2, b = \pi/3, E = 1000 \), and we decompose the domain into four square elements of size \(0.5 \times 0.5 \).

To document the locking properties according to the definition presented in Section 4, we plot the percentage relative error in the energy norm versus \(N^{(d)} \) in Fig. 5 for traction and displacement boundary conditions. The plot of relative errors shows that the procedure is robust with the order \(F_0(N) = O(h^{N + d}) \), since all the error curves are parallel to the asymptotic rate of best approximation \(F_0(N) = h^{N + 1} \) (\(h = 0.15 \)), which, by Theorem 1, confirms the locking-free behavior of the current method.

Results of Fig. 5 correspond well to the results obtained with the \(p \)-version FEM (Szabó et al., 1989). The results of (Szabó et al., 1989) indicate that the rate of convergence for \(v \in [0,0.5] \) is exponential with the relative error proportional to \(C(v)h^{N + d} \), where the rate of convergence \(h \) does not depend on \(v \), but the multiplication
constant C does, which results in convergence curves being parallel but shifted upwards as $n/0.5$. They also noted the existence of the bounding envelope shown schematically in Fig. 5(a) and (b), representing the error bound when $n/0.5$, which decreases with N at the rate of $F_0(N)$. Another result is the existence of p_{crit}, the polynomial order for which convergence starts as $n/0.5$. The value of p_{crit} depends on various factors, such as whether the elements are curved; whether they are triangles or quadrilaterals etc. (p_{crit} is smaller for triangles than for quadrilaterals).

5.3. Straight elements: unit cube

To document the spatial convergence in the full 3D case, we consider the deformation of a unit cube $[0,1] \times [0,1] \times [0,1]$, with an exact solution given in Appendix A.3. With $A = 1 - r/a$, $B = -0.5r/b$, $C = -0.5r/c$, we again recover a general loading situation with nonzero divergence,

$$\text{div } \mathbf{u} = (1 - 2r)\cos(\alpha)\cos(\beta)\cos(\gamma),$$

approaching zero as $r \rightarrow 0.5$, and nonzero shear strain components γ_{xy}, γ_{xz}, γ_{yz}. We set $a = \pi/2$, $b = \pi/3$, $c = \pi/4$, $E = 1000$ and decompose the domain into eight cubic elements $0.5 \times 0.5 \times 0.5$. Note that most of the previous studies on locking with hp-FEM were confined to two dimensions and did not consider three-dimensional cases (Suri, 1996; Szabó et al., 1989; Chilton and Suri, 1997; Yosibash, 1996). Convergence in the energy norm versus $N^{1/d}$ is plotted in Fig. 6 for traction and displacement boundary conditions. The results are almost identical to those of a unit square, showing that the problem dimension by itself does not influence the convergence and locking properties of the spectral element method, at least for straight elements.

5.4. Curved elements: hollow cylinder under internal pressure (plane strain)

To investigate the influence of curved elements on the method’s spatial convergence, we look at the problems in cylindrical and spherical configurations. We first consider a long, thick-walled, hollow cylinder under internal pressure resulting in a plane strain loading, with an exact solution given, for example, in (Gao, 2003) and documented in Appendix A.4. We set $E = 1000$, internal pressure $P = 100$, the inner and outer radius of the cylinder $r_i = 0.5$ and $r_o = 1$. Because of the plane strain loading, this problem can be considered in 2D. The computational domain consists of a hollow disk with six circumferential elements of the radial width $\Delta r = 0.5$. The computational domain and solution (radial displacement for $n = 0.3$) are shown in Fig. 7(a). Note that in order to achieve expected exponential convergence rates for the hollow cylinder, boundary grid nodes and GLL points need to be located precisely on the surface of the cylinder (within the machine accuracy of the numerical computation) in the undeformed configuration. This is required to make sure that boundary conditions are imposed at the correct locations to ensure convergence of the numerical solution to the exact solution, which otherwise would be deteriorated by the numerical errors coming from the boundaries. The required placement of GLL points onto the surface of the cylinder within the machine precision can be ensured by shifting them along the radii to conform to the surface after the elements are initially populated with the GLL points by the automatic mesh partitioning tools in the

Fig. 4. $L_2(u)$ error versus the polynomial order for a narrow beam in plane stress.

Fig. 5. Locking properties for the unit square: error in the energy norm. Dashed line represents the asymptotic curve $h^{N/2} \cdot a = 0.15$.
code. Note that Suri (1996) also used a special blending technique for the boundary segments to ensure convergence to the exact solution on a segment of an annulus.

Convergence in the energy norm versus $N^{1/d}$ is shown in Fig. 8 for traction and displacement boundary conditions. In the previous studies with hp finite-element methods, a decrease in accuracy has been observed for curved elements as compared to straight elements when $r \approx 0.5$ (Suri, 1996; Chilton and Suri, 1997) due to the fact that it is harder for the trial functions (which under general mappings may no longer be polynomials) to satisfy the incompressibility constraint (Suri, 1996). The effect seemed to be more severe for an h version than for a p version; for the latter the main deterioration could be summarized as a shift in convergence curves from C_p to $C(p-a)^{-k}$ when r is close to 0.5, where C, k and a are some constants, a depended on the nature of the curved side (Babuška and Suri, 1990). With a spectral-element formulation, increase in error with curved elements has also been observed in various problems (Deville et al., 2002; Schneidesch and Deville, 1993), due to the fact that the quadrature evaluation in the presence of Jacobian matrices of a general mapping is no longer exact. However, despite the increase in errors, an exponential convergence was still attained with the SEM in the presence of curvilinear meshes (Schneidesch and Deville, 1993). In our tests with the spectral-element method with curved elements for linear elasticity, we reached similar conclusions. The value of a slope in the exponential rate of convergence $O(h^{N^{1/d}})$ is increased from $h = 0.15$ for straight elements to $h = 0.5$ for the hollow cylinder, which indicates an overall increase in error with curved elements while retaining exponential convergence, consistent with the observations of Schneidesch and Deville (1993). In addition, the value of p_{crit}, the polynomial order for which convergence starts as $r = 0.5$, is increased compared to straight elements, consistent with the shift in convergence curves from C_p to $C(p-a)^{-k}$ when $r = 0.5$ observed by Babuška and Suri (1990) with p-FEM. Both

Fig. 6. Locking properties for the unit cube: error in the energy norm. Dashed line represents the asymptotic curve $h^{N^{1/3}}$, $h = 0.15$.

Fig. 7. Meshes with curved elements. Radial displacement u_r is shown.

(a) Hollow cylinder. Min displacement 0.05 (at r_0); max displacement 0.1 (at r_i).

(b) Hollow sphere. Min displacement 0.01 (at r_0); max displacement 0.04 (at r_i).
these effects, however, do not manifest a change in convergence rates with the increase in n (all curves in Fig. 8 are still parallel to each other) and therefore do not represent locking.

5.5. Curved elements: hollow sphere under internal pressure

Our next example is a 3D loading case with curved elements, namely, that of a thick-walled hollow sphere under internal pressure, with an exact solution given in Appendix A.5. We set $E = 1000$, $P = 100$, spherical shell radii $r_i = 0.5$, and $r_o = 1$; the domain consists of 24 elements with the radial width $\Delta r = 0.5$. Two orthogonal cross-sections of the sphere and the radial displacement for $n = 0.3$ are shown in Fig. 7(b). The same argument about the necessity of initial placement of GLL boundary points onto the surface of the sphere with the machine precision, as in the hollow cylinder case, applies here, otherwise boundary errors will impair an exponential convergence to the analytical solution.

Convergence in the energy norm versus $N^{1/d}$ is shown in Fig. 9 for traction and displacement boundary conditions. Conclusions similar to that of the cylindrical shell domain stay valid, confirming the absence of the effect of problem dimension on the locking properties of the method, as observed with the straight elements.

5.6. Calculation on distorted meshes

To further test the effect of mesh distortion on convergence and locking, we repeat the calculations of Section 5.2 corresponding to a deformation of a unit square under plain strain conditions, on highly-skewed non-orthogonal meshes. The schematic of a skewed mesh configuration as well as that of a base straight element mesh is shown in Fig. 10. We tested two values of the parameter a/L for the skewed mesh configuration: $a/L = 0.1$ and $a/L = 0.01$. These values roughly correspond to the element aspect ratios of 10 and 100, respectively, which represents a very strong value of distortion for quadrilateral elements (Cubit User Documentation, http://cubit.sandia.gov).

Percentage relative error in the energy norm versus $N^{1/d}$ is shown for $a/L = 0.1$ in Fig. 11 for traction and displacement boundary conditions. We see that the general effect of the mesh skewness largely resembles the effect of curvilinear elements:

![Fig. 8. Locking properties for the hollow cylinder: error in the energy norm. Dashed line represents the asymptotic curve $h^{N^{1/2}}$, $h = 0.5$.](image)

![Fig. 9. Locking properties for the hollow sphere: error in the energy norm. Dashed line represents the asymptotic curve $h^{N^{1/3}}$, $h = 0.55$.](image)
convergence for all Poisson ratios slows down (represented by the change of slope in convergence curves from $h = 0.15$ for straight elements to $h = 0.2$ for distorted elements); however, exponential convergence is retained for all Poisson ratios still showing no locking, albeit that, as with curvilinear elements, the onset of convergence is delayed to higher polynomial orders for large values of the Poisson ratios. The comparison of performance of the two distorted meshes of different aspect ratios with that of a straight mesh is shown in Fig. 12. The conclusions stated above remain valid; highly-distorted mesh with a very large aspect ratio of 100 behaves quite poorly in a nearly incompressible situation of $\nu = 0.4999999999$ showing a significant delay in the onset of convergence with the polynomial order.

5.7. Order of locking

In the current section, we summarize the order of robustness deduced from the error plots in all the cases and calculate the order of locking from the order of robustness. Results are printed in Table 1. Order of locking for all the test cases is zero.

6. Computational effort

Incompressibility condition of $\nu \to 0.5$ can not only influence the solution accuracy and the rate of error decay but also the computational efficiency due to the fact that the condition number of the stiffness matrix grows with the polynomial order and with the Poisson’s ratio (Pavarino and Widlund, 2000a). As a consequence, iterative solution of the linear system (19) can take increasingly large number of iterations to converge. To investigate the influence of the Poisson’s ratio on the convergence of the conjugate gradient method (CG), we plot the number of iterations of the CG method versus the polynomial degree for several test problems: for square and cube in Fig. 13, and for cylinder and sphere in Fig. 14. Following a study of Pavarino (1997) for mixed spectral element methods, we take the initial guess to be zero and the stopping criterion to be $\|r_i\|_{L_2}/\|r_0\|_{L_2} < 10^{-6}$, where r_i is the ith residual. Figures on the left represent the case when no preconditioning is employed, and figures on the right use a simple preconditioner (inexact mass-matrix preconditioner) equal to the numerical value of the mass matrix obtained by discretizing the term $\int_u \mathbf{v} \, \mathrm{d}^d U$ on GLL grid. Note that no attempt to optimize the choice of a preconditioner was made in the current study. It is seen that even this simple preconditioner works very well for the problems with curved elements (cylinder and sphere) reducing the number of iterations by about two orders.
of magnitude in some cases. This preconditioner, however, does not seem to be effective for the problems with straight elements (square and cube). As can be judged from the log–log plots, the number of iterations of the preconditioned method grows as a power of the polynomial degree p (with linear growth in most cases), comparable to the results of Pavarino for mixed methods (Pavarino, 1997). Unlike in the study of Pavarino (1997), the dependence on the Poisson’s ratio shows non-monotonic behavior.

To compare the efficiency of the present displacement-based algorithm with that of mixed methods, we compare the number of iterations taken by our method with the number of iterations in $Q_n - P_{n-1}$ mixed spectral-element method in the study of Pavarino (1997). To maximize the match of the computational conditions, we report results obtained on a cube $[1,1]^3$ and compare them to the results of Pavarino (1997) obtained on a cube $[1,1]^3$, one element is used in both studies. Unfortunately, exact match of the computational conditions is not possible, since, as mentioned before, Conjugate Gradient method is not applicable to a symmetric indefinite system of a mixed formulation that was solved with the closely related Conjugate Residual method by Pavarino (1997). In addition, preconditioners were different: inexact mass-matrix preconditioner in this study, and inexact stiffness-matrix preconditioner in Pavarino (1997).

Results for this comparison are presented in Table 2. We put the data obtained with $\nu = 0.4999999999$ in the column with $\nu = 0.5$, since the exact value of $\nu = 0.5$ would make the system singular in our method. The table shows that the displacement method with its particular combination of iterative solver/preconditioner is slightly more efficient at low polynomial orders than the mixed method with its particular combination of iterative solver/preconditioner, as described above, but becomes less efficient at large polynomial orders and Poisson’s ratios in the range of 0.499–0.49999. The recovery of the current method for $\nu > 0.49999$ is an interesting attribute and deserves further investigation in the future.

We admit that comparing these two methods with different iterative solvers and preconditioners does not allow us to make definite conclusions about the superiority of one method versus another in terms of computational efficiency. Rather, it tells us that both methods, in their unoptimized form, show roughly similar iteration counts and don’t differ by orders of magnitudes in efficiency. We also acknowledge that there is a potential for both methods to improve in efficiency. Indeed, inexact preconditioner in the study of Pavarino (1997) is the worst-case scenario: better

Table 1
Order of robustness and order of locking for the calculated test cases.

<table>
<thead>
<tr>
<th>Best approximation rate $F_0(N)$</th>
<th>Order of robustness $g(N)$</th>
<th>Order of locking, r $f(N) = O(N^r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D, straight elements $0.15^{N^{1/2}}$</td>
<td>$0.15^{N^{1/2}}$</td>
<td>0</td>
</tr>
<tr>
<td>2D, skewed elements $0.2^{N^{1/2}}$</td>
<td>$0.2^{N^{1/2}}$</td>
<td>0</td>
</tr>
<tr>
<td>3D, straight elements $0.15^{N^{1/3}}$</td>
<td>$0.15^{N^{1/3}}$</td>
<td>0</td>
</tr>
<tr>
<td>2D, curved elements $0.5^{N^{1/2}}$</td>
<td>$0.5^{N^{1/2}}$</td>
<td>0</td>
</tr>
<tr>
<td>3D, curved elements $0.55^{N^{1/3}}$</td>
<td>$0.55^{N^{1/3}}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 13. Number of iterations of the conjugate gradient method for the square (4 elements) and the cube (8 elements). Top figures correspond to the square; bottom, to the cube. Left figures correspond to CG without preconditioner; right, with preconditioner.
iteration counts are obtained when exact block-diagonal preconditioner is used. The preconditioner used in the current study has not been optimized, and likely better efficiency can be obtained in the current method as well once this is done. We note that studies addressing the choice of a good preconditioner for the current method and comparing results with mixed methods with a better match of the computational conditions would be beneficial and will be performed in the future.

7. Conclusions

In this paper, we investigate convergence properties of the Legendre spectral element approximation with displacement formulation of linear elasticity equations for a range of Poisson’s ratios from a compressible regime ($\nu = 0.3$) to nearly incompressible regime ($\nu = 0.4999999999$). Several numerical examples are considered, including problems with straight elements in 2D and 3D as well as problems with curved elements in 2D and 3D and on distorted meshes. Following the mathematical definition of locking (Babuska and Suri, 1992a, 1992b; Suri, 1996), we calculate a computable measure of locking, the order of robustness. The order of locking calculated from the order of robustness is zero for all the cases. This shows the absence of Poisson locking in the energy norm for displacement-based spectral-element discretization of linear elasticity equations, consistent with previous observations with p and hp finite elements. Although the procedure is free from locking in the asymptotic sense, the polynomial order at which convergence starts increases as the Poisson’s ratio gets close to 0.5, and it further increases when the curved elements or highly-distorted meshes are used. Preliminary comparison of computational efficiency of the current method with $Q_0 - P_{n-1}$ mixed spectral-element method of Pavarino (1997) shows similar iteration counts of the iterative solver. Future studies will address comparing different preconditioning techniques for the current method and choosing an optimum preconditioner, as well as performing comparison with other methods at a closer match of computational conditions.

Fig. 14. Number of iterations of the conjugate gradient method for the cylinder (6 elements) and the sphere (24 elements). Top figures correspond to the cylinder; bottom, to the sphere. Left figures correspond to CG without preconditioner; right, with preconditioner.

Table 2
Comparison of the number of iterations between the displacement (direct) and the mixed $Q_0 - P_{n-1}$ (Pavarino, 1997) spectral element methods.

<table>
<thead>
<tr>
<th>p</th>
<th>n</th>
<th>0.3</th>
<th>0.4</th>
<th>0.49</th>
<th>0.499</th>
<th>0.4999</th>
<th>0.49999</th>
<th>0.499999</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Direct</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Direct</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>30</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Direct</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>34</td>
<td>40</td>
<td>56</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Direct</td>
<td>18</td>
<td>21</td>
<td>36</td>
<td>41</td>
<td>39</td>
<td>35</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>42</td>
<td>49</td>
<td>68</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Direct</td>
<td>22</td>
<td>27</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td>41</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>46</td>
<td>54</td>
<td>80</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Direct</td>
<td>27</td>
<td>33</td>
<td>67</td>
<td>99</td>
<td>107</td>
<td>95</td>
<td>61</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>52</td>
<td>61</td>
<td>92</td>
<td>102</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>9</td>
<td>Direct</td>
<td>32</td>
<td>39</td>
<td>77</td>
<td>97</td>
<td>121</td>
<td>78</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>55</td>
<td>65</td>
<td>97</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>Direct</td>
<td>37</td>
<td>46</td>
<td>97</td>
<td>163</td>
<td>201</td>
<td>150</td>
<td>86</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>57</td>
<td>69</td>
<td>107</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>122</td>
<td>122</td>
</tr>
</tbody>
</table>
the following exact solutions exist:

\[
\begin{align*}
 u &= A \sin(\alpha x) \cos(\beta y) \cos(\gamma z), \\
 v &= B \cos(\alpha x) \sin(\beta y) \cos(\gamma z), \\
 w &= C \cos(\alpha x) \cos(\beta y) \sin(\gamma z).
\end{align*}
\]

Appendix A. Exact Solutions to the Test Problems

Appendix A.1. Bending of a narrow cantilever beam

For the bending of a narrow cantilever beam with rectangular cross-section of length \(L\) and height \(d\), under the end load \(P\) applied at \(x = 0\) and fixed at the point \(x = L\), \(y = 0\), the following exact solution exists for the horizontal displacement \(u\) and the vertical displacement \(v\) (Wang, 1953):

\[
\begin{align*}
 u &= -\frac{P}{2EI} y^2 + \frac{P}{2EI} \left(1 + \frac{v}{2}\right) y^3 + \frac{P}{2EI} \left[L^2 - \left(1 + \frac{v}{2}\right) \right] y, \\
 v &= \frac{P}{2EI} \left(1 + \frac{v}{2}\right) y^2 - \frac{P}{2EI} \left(1 + \frac{v}{2}\right) x + \frac{P}{EI} x.
\end{align*}
\]

Here \(l = d^3/12\) is the cross-sectional moment of inertia.

Appendix A.2. Deformation of a unit square

For a unit square \([0,1] \times [0,1]\) in plane strain conditions under forcing

\[
\begin{align*}
 f_x &= A_x \sin(\alpha x) \cos(\beta y), \\
 f_y &= A_y \cos(\alpha x) \sin(\beta y),
\end{align*}
\]

where

\[
\begin{align*}
 A_x &= (Aa^2 + Bab) (\lambda + \mu) + A(a^2 + b^2) \mu, \\
 A_y &= (Bb^2 + Bab) (\lambda + \mu) + B(a^2 + b^2) \mu,
\end{align*}
\]

the following exact solutions exist:

\[
\begin{align*}
 u &= A \sin(\alpha x) \cos(\beta y), \\
 v &= B \cos(\alpha x) \sin(\beta y).
\end{align*}
\]

Appendix A.3. Deformation of a unit cube

For a unit cube \([0,1] \times [0,1] \times [0,1]\) under forcing

\[
\begin{align*}
 f_x &= A_x \sin(\alpha x) \cos(\beta y) \cos(\gamma z), \\
 f_y &= A_y \cos(\alpha x) \sin(\beta y) \cos(\gamma z), \\
 f_z &= A_z \cos(\alpha x) \cos(\beta y) \sin(\gamma z),
\end{align*}
\]

where

\[
\begin{align*}
 A_x &= (Aa^2 + Bab + Cac) (\lambda + \mu) + A(a^2 + b^2 + c^2) \mu, \\
 A_y &= (Bb^2 + Aab + Cbc) (\lambda + \mu) + B(a^2 + b^2 + c^2) \mu, \\
 A_z &= (Cc^2 + Aac + Bbc) (\lambda + \mu) + C(a^2 + b^2 + c^2) \mu.
\end{align*}
\]

References

J. Comp. Phys. 92, 380.

J. Comp. Phys. 92, 380.